Skip to main content
Menu Search Languages
//

‹ News

Advances in P-Cap Touch Control Technology

06 April 2014

By Ian Crosby & Dr Andrew Morrison, Zytronic

Over the last decade the uptake of projected capacitive (p-cap) touch sensor technology has been phenomenal. It has helped shape a new era of human-machine interaction and enabled the derivation of more fulfilling user experiences. Further proliferation of p-cap touchscreens seems certain, with the enormous potential for it to benefit many different application scenarios. If this is to be achieved, however, advances in the supporting touch control electronics will almost certainly be required.

Almost everyone, from adults to small children, is now very familiar with touchscreen interaction in handheld electronic devices, and increasingly in domestic appliances, gym equipment, self-service terminals and bank ATMs. It has become so pervasive that people, presented with a display will often attempt to control it by touch first, whether or not it is capable of this. Given the intuitive control that touchscreens offer in comparison to push buttons and keyboards, there is now a growing demand to apply the technology in more and more areas, and in increasingly demanding environments. This, as we will discuss, puts certain operational pressures on the touch controller electronics that accompany them.

A1480R

P-Cap Sensor Technologies & Touch Control Implications
There are two basic sensing methodologies associated with p-cap touchscreens. The most widely used to date have been based on mutual capacitive touch sensing - which is seen extensively in the portable consumer market. This has been the foundation, for example, of the touchscreens found in tablet computers, and smartphones. Most mutual capacitive touch sensors have two separate patterned conductive layers (with a matrix of discrete cells formed from Indium Tin Oxide, or ITO), which are each directly connected to the touch control electronics. A small charge is applied to one layer of cells and passes to the second layer through capacitive coupling. Touch events, caused by the approach of a finger or suitable conductive stylus will draw some of the charge passing between the layers. Detection algorithms embedded within the touch controller firmware are then able to mathematically determine the cells on the matrix where the most acute capacitance change occurs and supply the host PC with details in the form of XY coordinates.

In contrast, the less widely used self-capacitive sensing technique relies upon the detection of minute changes in frequency. A known oscillation frequency is applied to the XY grid on the rear side of a suitable substrate. The known oscillation frequency is affected by the presence of the capacitance of the human body or a suitable conductive stylus. If a user’s finger comes into proximity with the touchscreen’s surface it is possible to determine which conductors (in both X and Y axes) experience the greatest alteration in frequency, and a suitable set of output coordinates are provided to the host computer.

Mutual capacitive touch technology is very well suited to touchscreen applications requiring multitouch functionality, as each cell within the conductive matrix is capable of registering a touch. However, at relatively low voltages, it is difficult for this approach to detect a touch through more than a couple of millimetres of glass. Whereas self-capacitive touch sensing is an inherently more sensitive method, and therefore can typically detect touch through far greater thicknesses of overlying material. However, it has the drawback of normally only being able to detect one or two touch points, as the entire conductor in each axis is monitored, rather than each individual cell in a matrix.

Key Issues Defining Next Generation P-Cap Touch Controllers
Whether the touchscreen is for consumer electronics or commercial/industrial use, there are four fundamental areas where research and development has been focused to advance both touch performance and user interface design. These are:
Faster speed – Particularly with larger touchscreen systems the size of the conductive matrix in the touch sensor will have a negative effect on the registration of touch coordinates. To counter this, the associated touch control electronics must possess substantial processing capabilities - otherwise lag or latency will be evident as a touch point is moved across the screen, detracting from users’ overall satisfaction.

Heightened accuracy – If the touch points cannot be determined with suitable precision then user frustration may result. It is important that both the design of the touch sensor matrix and its controller be optimized for the screen size and application.

Improved immunity to EMI - Though it might be assumed that this was only an issue for touchscreen systems placed into industrial environments, there are in fact a wide variety of commercial applications where exposure to electro-magnetic interference (EMI) can have a detrimental effect on touch operation. For example, self-service kiosks such as ticket and vending machines located in train stations will be subjected to surges in EMI as trains pass. Similarly, touchscreens deployed in areas where the power supply is inconsistent or not well regulated will also be affected by transient interference coming up the power cable from the mains supply. Major improvements to the electronic design and touch detection firmware employed by the touch controller are needed in these circumstances to ensure that signal integrity is maintained at a high level.

Greater integration - For compact touchscreen designs, there is a clear advantage if the footprint of the touch controller can be kept to a minimum. Reducing the PCB size is therefore important, as is making available the controller chip-set, so that designers can consider embedding the touch controller onto an existing system motherboard.

Commercial applications now demand a new generation of touch sensor systems which are capable of achieving higher degrees of responsiveness and precision, as well as maintaining greater EMI stability and overall compactness. In response to these raised expectations found in a broad cross section of uses, touch sensor manufacturer Zytronic has added a new, sophisticated touch controller to its product portfolio - the ZXY110.

This high performance touch controller is designed for use with existing touchscreens based upon the company’s own proprietary self-capacitive Projected Capacitive Technology (PCT™). Capable of supporting single and dual touch operation, the ZXY110 touch controller incorporates a 32-bit ARM Cortex-M4 processor core that can run at speeds of up to 168MHz. This processing element is supported by two Zytronic designed application specific integrated circuits (ASICs). These ASIC devices increase the level of integration substantially in comparison to a discrete component solution, thereby minimising circuit board size, as well as boosting performance. The touch controller actively scans the matrix of micro-fine copper electrodes that make up a PCT sensor in order to find miniscule changes in frequency resulting from the user’s finger approaching the screen. This sensing method is so sensitive, it is capable of registering touches through over 20mm of covering glass, making it an ideal touch solution for self-service and other damage prone applications.

zxy11032

With the ZXY110, updating coordinates for a touch event takes less than 5msec. This means that latency is kept to a minimum. Of particular significance, especially for applications subject to high levels of radio frequency and electromagnetic interference, is Zytronic’s patented ‘smart’ frequency-scanning function that allows the controller’s operating frequency to shift automatically and dynamically between 0.7MHz and 2.2MHz in order to avoid environmental noise that it has detected. This ensures a high signal-to-noise ratio is maintained consistently. Once again, the process of frequency scanning and adapting occurs so quickly that it is imperceptible to the user.

The new touch control hardware is available in a 32-input version for displays up to 19 inches, and a 64-input version that can support up to 46 inch formats. As it has an identical mounting arrangement to Zytronic’s popular ZXY100 touch controller, the ZXY110 offers a simple upgrade path for existing touchscreen deployments. It provides native support for Windows 7, Windows 8 and Linux systems and operates as a plug-and-play human interface device (HID). This means that engineers can quickly and easily integrate it into their touchscreen design.

To meet the challenges raised by increasing demand for larger format touchscreens that both match the fast touch performance of small consumer devices and continue to function effectively in environments with high levels of electrical interference, companies will need to be smarter about the control electronics they employ in systems. Fortunately, touch sensor developers are continuing to push the boundaries of performance and resilience and can provide solutions for even the most demanding applications.

Back to top